
Computer Networks 257 (2025) 110907 

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

P4+NFV: Optimal offloading from P4 switches to NFV for diverse traffic
streams
Sidharth Sharma a,∗, Yuan-Cheng Lai b, Ashwin Gumaste c, Ying-Dar Lin d

a Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore, 453552, India
b Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan
c Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
d Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

A R T I C L E I N F O

Keywords:
P4
NFV
Offloading
Optimization
Programmability
Data plane

A B S T R A C T

Software-defined Networking (SDN) is making its mark in the operator networks. The latest generation of
SDN switches supporting paradigms such as P4, are paving the way for complete data plane programmability.
Though P4 switches enable some newer applications, they do not provide the same agility and scalability
offered through fully programmable softwarized data planes of Virtual Network Functions (VNFs). This paper
argues that to achieve substantial performance benefits, an operator can take advantage of deploying P4
switches alongside VNFs. The idea is to use the P4 switch as a default packet handler, whereas traffic
can be offloaded to an off-site VNF when queues at the switch start to build. To this end, this paper first
models the queuing behavior of a networked system with a P4 switch and a VNF to determine the queuing
delay induced by such a hybrid architecture. While doing so, the paper considers two different cases of
homogeneous and heterogeneous traffic patterns. Subsequently, the paper proposes algorithms for finding
optimal traffic offloading, leading to overall delay minimization. The paper showcases significant performance
gains of optimally offloading traffic from a P4 switch to a VNF amidst changes in disparate traffic and network
parameters through simulations and analytical results. For instance, at moderate loads of homogeneous traffic,
optimal offloading yields performance gains of up to 76.44% over a scenario where a P4 switch handles all the
packets. For heterogeneous traffic patterns, the results show that the dominant flow’s workload and average
packet size can significantly impact the offloading performance.
1. Introduction

Complex network functions and a diverse set of protocols will char-
acterize modern applications such as 5G, IoT, and beyond. To realize
these next-generation services in a network, data planes should ide-
ally be fully programmable [1,2]. Software-defined Networking (SDN)
was the initial step towards making the networks programmable by
decoupling the control plane from the data plane. However, forward-
ing devices supporting SDN protocols (such as OpenFlow) are inad-
equate for next-generation applications as they only support partial
data plane programmability [3]. This is because OpenFlow cannot
program the packet processing pipeline at the forwarding devices. In
the absence of full programmability in OpenFlow-based SDN switches,
proprietary hardware middleboxes still needed to be deployed for
facilitating new applications [4]. However, they incur huge costs and
require operational expertise to manage.

Network Function Virtualization (NFV) is a recent technological
advancement towards achieving full programmability in the networks
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by detaching the network function from the customized hardware [5,
6]. Instead, the software implementations of the network functions
(referred to as virtual network functions or VNFs) are hosted on com-
modity servers leading to significant cost benefits and flexibility [6].

Recent developments in the capability to customize the switch’s
data plane through high-level programming languages (such as P4)
enable significant control and flexibility in packet processing [7]. P4
makes OpenFlow supporting SDN switches fully programmable, which
can also be used to realize heterogeneous network functions (such as
NAT, Firewall, Load Balancer, DNS Accelerator, BNG), generally im-
plemented in proprietary middleboxes [8,9]. Traditionally, for travers-
ing Network Functions (NFs), traffic is redirected from the operator’s
switches towards the middleboxes [5]. Replacing these general-purpose
switches with their P4-based programmable equivalents yields signif-
icant performance benefits. This is because the traffic now need not
traverse a remote middlebox as the programmable switch can host
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the Physical Network Function (PNF). Moreover, these programmable
switches could be placed at the network’s edge, facilitating edge com-
puting [10]. In such a scenario, implementing the PNFs within these
witches makes more sense for latency-sensitive applications. However,
esources at the programmable switches are distributed across multiple

operations; the network function gets only a chunk of the switch’s
computational resources, making the PNF implementation restrictive
in terms of capacities for processing network functions. Also, some
network functions are complex; the P4 switch must spend a lot of
computation capacity to handle the packets that require these network
functions. Compared to commodity servers with gigabytes of memory
that can easily host NFs, programmable data-plane switches typically
only have SRAMs and TCAMs in the order of megabytes [11]. For
instance, the Intel Tofino3 switch has 200 Megabits of SRAM and 10.3
Megabits of TCAM per pipeline [11]. Therefore, if the switch’s NF
annot process the amount of traffic it receives, the edge computing
aradigm suggests offloading traffic to a cloud (or Data Centers (DCs))

that offers substantial processing capacities to deal with a tremendous
mount of network traffic. For hosting NFs, DCs are assumed to have
NF farms, which are extremely flexible in terms of capacity as they
an be scaled/replicated as per the traffic demand. However, to traverse
NFs, the network traffic must be diverted towards the operator’s DC

rom the switch on the traffic path, leading to an additional delay
enalty for the traffic. Therefore, both the software and P4-based
etwork functions have their benefits, but their adoption has some
hallenges.

In this paper, we evaluate the performance benefits of using the
wo alternatives together. We propose using a P4-based programmable
witch as a default path while traffic is offloaded to a VNF if needed.
he offloading depends upon the traffic volume at the programmable
witch. Through an analytical model, we show that significant perfor-
ance benefits can be obtained using the proposed model instead of

ntirely using hardware- or software-based NFs.
Recently, researchers investigated the possibility of cooperating a

rogrammable P4 switch with NFV. P4-SC [12] and P4-SFC [13] are
methods of implementing VNF service function chains with a P4-
apable device. P4NFV [14] and Hyper [15] are proposals for running
Fs on both software and hardware platforms to improve performance.
NO [16] is a SDN-controlled NF offload architecture that can transpar-

ently leverage the smart NIC’s programmable compute capabilities to
accelerate the NF data plane. In [17] authors proposed an architecture
for embedding P4 capability into NFV platforms, including both the
host and smart NIC. In [18], is a P4-based framework to enhance NFV
services. The framework presents a way to offload traffic utilizing P4
programs. Though these works explored the interoperability of NFV and
rogrammable switches, none considered the performance gain from
heir optimal usage together. We argue that even though the integration

of programmable switches with NFV appears promising, significant
erformance improvement can only be observed if the offloading is

optimal. We answer multiple questions, which could be helpful for an
operator attempting to integrate programmable switches with VNFs.
These questions include the impact of parameters (such as arrival rate,
the distance between the programmable switch and the VNF, packet
attributes, and processing resources) on the optimal offloading and
verage packet delay.

In the paper, we present two different cases of traffic arrivals at the
programmable switch. The first case is when the traffic arriving at the
switch is of the same class and can be characterized by a single arrival
rate. In contrast, the second case considers different classes of traffic
with independent arrival rates. The second class is useful for operators
who offer different heterogeneous traffic types and their arrival rates
are independent of each other.

The paper makes the following contributions:

• We, for the first time, discuss the possibility of offloading traf-
fic from a programmable switch to a VNF. To analyze possible
performance gains, we use queuing theory to obtain the average
packet delay.
2 
• We consider two cases of homogeneous and heterogeneous traffic
and for both cases proposed algorithms for optimal offloading of
traffic from a programmable switch to a VNF, aiming to minimize
the average packet delay.

• With the evaluation, we answer multiple questions, which could
be helpful for an operator attempting to integrate programmable
switches with VNFs. These questions include the impact of pa-
rameters (such as arrival rate, the distance between the pro-
grammable switch and the VNF, packet attributes, and processing
resources) on the optimal offloading and average packet delay.

The paper is organized as follows. Section 2 presents some back-
round on P4 and NFV and discusses a few works related to our
erformance modeling. Section 3 first proposes the architecture of the

programmable switch with NFV and then analyzes its performance.
Section 4 describes algorithms for optimal VNF offloading amidst ho-
mogeneous and heterogeneous traffic patterns. Section 5 showcases
results from the analytical and simulation models. Finally, Section 6
concludes the paper.

2. Background and related work

Data plane programmability offers infrastructural support for next-
generation services. Programming Protocol-independent Packet Proces-
ors (P4) is a de-facto language for programming a data plane. P4 can
ynamically parse any header field from the packet and pass it through
 custom pipeline of match-action tables. With P4, new applications can
e quickly prototyped by network vendors or even users, eliminating
he reliance on Application-specific integrated circuits (ASIC). This is
he reason why operators across the globe have now started using P4
witches in their networks for different applications. Network functions
ike load balancers, DNS caches, tunnel gateways, firewalls, and DDoS
etectors are already being implemented in the P4 switches [19,20].

In [8] authors have presented a DNS service within a network de-
vice using P4. Latency and throughput improvements over existing
oftware solutions were shown through experiments. In [21], authors

proposed a method for offloading media traffic from relay servers to
P4 programmable switches. P4 switch vendors look at IoT and 5G
as significant opportunities, hence designing high-speed programmable
switches without compromising performance [22].

NFV enables disaggregation of network functions from the pro-
prietary middleboxes. Like the programmable switches, NFV also in-
roduces programmability in the network and facilitates many new
pplications. To our knowledge, this is the first work that together
nalyzes the performance of a P4-based programmable switch with
FV. However, some previous papers analyzed the SDN/NFV networks.
e list some major related works in Table 1 and qualitatively compare

ur work with them. We have categorized their performance modeling
pproach into approximate and exact analysis classes. In the approx-

imate analysis class, [23–26,29–31,42] used M/M/1 or its variants
for performance modeling of SDN switches. Whereas, [27,28,32] used
M/G/1 model, M/Geo/1 and MMPP/M/1 model, respectively. In con-
trast, several works performed an exact analysis of SDN switches such
as [36–38,40,41]. These works have used Markov chains for modeling
the SDN switch’s performance.

Authors in [23] analyzed the performance of a single OpenFlow SDN
switch and controller. In [24] is also an M/M/1 analysis of an SDN
switch with an OpenFlow controller using Jackson networks. However,
heir analysis can be extended for more than one switch. In [26] is an

approach to analyze how OpenFlow packet-in messages impact the SDN
switch and controller performance using the M/M/1 model. The work
in [25] is focused on the SDN data plane performance and proposed a
preemption-based packet scheduling approach. The proposed approach
enhances the global fairness index and reduces packet loss probability.
The work of [27] also solely considered SDN data plane performance
and used an M/Geo/1 queuing model to obtain the delay values.
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Table 1
Related works.

Category Paper SDN switch NF Characteristics

VNF PNF

Approximate

[23] Jarschel (2011) M/M/1 No No Fundamental modeling

[24] Mahmood (2015) M/M/1 No No Multiple switches

[25] Miao (2015) HPQ:M/M/1/k
LPQ:M/M/1/k

No No Priority queues

[26] Shang (2016) M/H2/1 No No Separation of packet-in messages
and others

[27] Sood (2016) M/Geo/1 No No Geometric distribution for service

[28] Miao (2016) HPQ:MMPP/M/1
LPQ:MMPP/M/1/k

No No MMPP for multimedia traffic
arrivals

[29] Xiong (2016) Mx/M/1 No No Batch traffic arrival rate at switch

[30] Fahmin (2018) M/M/1 M/M/1 No Combination of SDN and VNF

[31] Nweke (2020) M/M/1 No No Adversarial flow

[32] Zhao (2020) M/G/1 No No Software-defined WAN

[33] Shen (2022) M/M/1 No No Data Center Network

[32] Zhao (2020) M/G/1 No No Software-defined WAN

[33] Shen (2022) M/M/1 No No Data Center Network

[34] Maheswari (2022) M/M/c No No Multi-Controller SDN

[35] Kröger (2022) M/G/1 No No P4 switch

This paper M/M/1
M/G/1

M/M/1
M/G/1

M/M/1
M/G/1

P4 switch with VNF

Exact

[36] Goto (2019) 2D MC (HPQ, LPQ) No No Exact solution with Markov Chain

[37] Singh (2018) 2D MC (HPQ, LPQ) No No Software vs. hardware switches

[38] Lai (2019) 3D MC (flow1, flow2, Q) No No Flow-level: TCP and UDP

[39] Zhang (2019) 2D MC (Q1, Q2) No No Auxiliary connection between
switch and controller

[40] Singh (2020) 4D MC (internal buffer, HPQ, LPQ,
hardware)

No No Encapsulation vs. Internal buffer

[41] Gadallah (2022) 7D MC (queues and flows (TCP/UDP) at
switch, local and root controllers)

No No Flow-level TCP and UDP
w
p
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t
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w
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In [28], authors used Markov Modulated Poisson Process (MMPP) to
odel bursty and correlated arrivals for an SDN switch. Whereas the

work in [32] targets performance modeling of a software-defined WAN.
They have used M/M/n queue to model the controller cluster and an

/G/1 queue for the OpenFlow switch. Authors in [33] propose a
ueuing model for estimating the flow table states of SDN switches
n DCNs. In another paper [34], authors considered 𝑐 controllers with
inite buffers of size 𝑘 and evaluated the effect of Retention of Reneged
lows. The authors have used M/M/c/K queuing model in their ana-
ytical framework. The work in [35] is close to our work in the sense

that they model the performance of a P4 switch using M/G/1 queues.
However, the authors have not considered VNF in their model. The

ork in [43] uses deterministic network calculus for obtaining delay
and buffer sizes for the SDN switch and controller.

On the exact analysis front, the work in [36] uses priority queues
with a finite capacity for classful treatment of packets arrived at an
DN switch. They have used a continuous-time Markov chain (CTMC)

to model the system. The work in [37] presents an analysis of hardware-
and software-based SDN switches using a Quasi-Birth Death (QBD)
process. In [40], authors evaluate two schemes for the SDN switch
and controller communication. For both methods, the authors analyzed
the resultant performance using CTMC. Whereas the work in [38]
nalyzed TCP and UDP flows in SDN switches. Their analysis also
aptured the communication between the SDN switch and controller
sing CTMC. Similarly, presented in [39] is a queuing analysis of

auxiliary-connection-enabled OpenFlow switches using CTMC. In [41],
authors have used a 7-D state to model TCP and UDP flows in an
SDN environment. The authors have proposed a queuing model for
SDN traffic considering TCP and UDP flows in a network with multiple
3 
controllers and OF switches. All the queues were modeled as M/M/1/m
queues.

Moreover, a few works characterize the performance of NFV net-
orks. Notably, [44] used stochastic network calculus to analyze the
erformance of NFV servers as part of a service function chain. In [45]

is an end-to-end performance modeling approach for a system consist-
ng of Multi-access Edge Computing servers and VNFs using discrete-
ime Markov chains (DTMC). In [46], a network calculus-based analysis

for a service function chain in an NFV network is presented. Authors
n [47] proposed an M/D/1 queuing analysis of a VNF chain in a 5G

core network. A dominant-resource generalized processor sharing (DR-
GPS) approach is used for resource sharing among flows on an NFV
node.

Approaches mentioned above have either considered SDN or NFV
networks in their analysis. Though some papers consider the intricacies
f operating them together, such as [30,48]. Authors in [30] modeled

a VNF along with an SDN switch and controller. They have considered
two scenarios based on whether VNF can directly interact with the
switch or the SDN controller. They used a network of M/M/1 queues
to model all the considered elements and derived delay bounds for
both cases. The work in [48] derives the performance of a mobile
cloud computing platform amidst the presence of both SDN and NFV.
Like [30,48] has also used M/M/1 queues in their analysis.

Our work is fundamentally different from all the related works,
as none considered analyzing the performance of a P4 switch along

ith a VNF. After analyzing the queuing network, we aim to find the
ptimal offloading probability for a packet leading to overall delay

minimization.
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Fig. 1. Queuing representation of a programmable switch with a VNF for homogeneous traffic.
Fig. 2. Queuing representation of a programmable switch with a VNF for heterogeneous traffic.
3. Problem formulation

We first briefly explain the network architecture used for develop-
ing the analytical model. We assume that the operator has deployed
programmable switches instead of traditional ones. The programmable
switch is assumed to be placed at the edge of the data center where
VNF resides. Therefore, traffic entering a switch requiring a network
function can either traverse the function in the switch or can be
forwarded towards the VNF in the DC. However, after VNF traversal,
the packets re-enter the switch and eventually be forwarded towards
their destination. In this scenario, the critical question is how much
traffic should be offloaded to the VNF so that the operator gets the
maximum performance benefits. This section first presents a queuing
network emulating the discussed architecture. Based on this network,
the average packet delay is derived. Finally, the problem of estimating
optimal offloading is formulated. We consider two different scenarios
in this paper. The first one is for homogeneous traffic, where we
consider one stream of traffic and calculate offloading probability. For
the second scenario, we consider multiple heterogeneous traffic streams
to be handled differently by the switch. For example, some of these
traffic streams may require a specific network function, while others
may not require traversing it.

3.1. Model

We model the interoperability of a programmable switch with a
VNF using interconnected queues. Figs. 1 and 2, which correspond to
homogeneous and heterogeneous traffic, respectively, are the queuing
networks considered in the paper. As shown in both the figures, there
4 
Table 2
Notations.

𝜆 Input packet arrival rate
𝑝VNF Switch to VNF offloading probability
𝑝NF Probability of traversing the network function
𝑐PNF PNF processing capacity
𝑐VNF VNF processing capacity
𝑐SP Switch processing capacity
𝑐SC Switch communication capacity
𝑤 Packet workload
𝑙 Packet length
𝐷SV Propagation delay between the switch and VNF

are four queues in our model: (a) A processing queue that serves
every packet that enters the switch; a PNF queue at the switch that
handles the packet traversing the network function inside the switch; a
communication queue that handles every packet transmitted out of the
switch; and finally, a queue at the VNF that handles packets forwarded
to the VNF from the switch.

There are some assumptions we follow in our analysis. We assume
all the queues are of infinite length. The packet arrival at the switch
follows the Poisson distribution. For homogeneous traffic, the service
times at each queue are exponentially distributed. While for the hetero-
geneous case, the service times are assumed to be generally distributed.
We also assume that a packet can traverse the NF at most once, and
there is no separation of newly coming packets and the packets which
have experienced VNF in the input queue. Our final assumption is about
the VNF queue, which is assumed to be the queue entering the VNF
farm of the DC.
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It is assumed that the offloading algorithm runs on the P4 switch
tself. Our algorithm takes less than 0.5 s to find the optimal offloading
robability. The switch keeps track of the arrival rate of the flows and
uns the algorithm after every 0.5 s, assuming that the arrival rate will

be similar for the next 0.5 s. Based on the algorithm’s output, the switch
ffloads the traffic to the VNF.

3.2. Delay modeling for homogeneous traffic

We now derive the average packet delay experienced by the packets
in the considered queuing network for the homogeneous traffic case
(shown in Fig. 1). In this regard, we first calculate the cumulative
rrival rate at each of the four queues shown in Fig. 1 and then use
/M/1 formulae for calculating the average delay. Notations used in

his analysis are presented in Table 2.

3.2.1. Calculating delay at switch’s processing queue
Initially, when packets with an arrival rate of 𝜆 enter the switch,

they are handled by the switch’s processing queue. Other than these
ewly arrived packets, the packets offloaded to the VNF from the
witch re-enter it and are handled by the switch’s processing queue.
herefore, the cumulative arrival rate at the switch’s processing queue

s calculated as

𝜆SP = 𝜆 + 𝜆 × 𝑝NF × 𝑝VNF. (1)

Since we use M/M/1 queuing model, the average packet delay at the
switch’s processing queue (𝐿SP) can be obtained as

𝐿SP = 1
𝑐SP − 𝜆SP . (2)

3.2.2. Calculating delay at switch’s PNF queue
Out of the packets requiring network function traversal, some are

handled by the PNF at the switch. Hence arrival rate at the switch’s
NF queue is

𝜆PNF = 𝜆 × 𝑝NF × (1 − 𝑝VNF). (3)

The processing capacity at the switch’s PNF queue is 𝑐PNF and the
average packet workload is 𝑤. Hence the packet service rate at the
PNF’s queue is 𝜇PNF = 𝑐PNF∕𝑤. Therefore, the average delay at the PNF
queue (𝐿PNF) is
𝐿PNF = 1

𝜇PNF − 𝜆PNF . (4)

3.2.3. Calculating delay at switch’s communication queue
Any packet supposes to leave the switch enters into its communi-

ation queue for transmission. Hence the arrival rate at the switch’s
ommunication queue is calculated as

𝜆SC = 𝜆 + 𝜆 × 𝑝NF × 𝑝VNF. (5)

The capacity of the switch’s communication queue is 𝑐SC, and the
average packet length is 𝑙. Hence the service rate at the switch’s
communication queue is 𝜇SC = 𝑐SC∕𝑙. Therefore, the average packet
delay at the communication queue (𝐿SC) can be expressed as

𝐿SC = 1
𝜇SC − 𝜆SC . (6)
5 
3.2.4. Calculating delay at VNF queue
Some of the traffic entering the switch is forwarded towards the

VNF. Hence the arrival rate at the VNF is
𝜆VNF = 𝜆 × 𝑝NF × 𝑝VNF. (7)

The processing capacity of the VNF is 𝑐VNF and the average packet
workload is 𝑤. Hence the packet service rate at the VNF’s queue is

VNF = 𝑐VNF∕𝑤. Therefore, the average packet delay at the VNF queue
𝐿VNF) is
𝐿VNF = 1

𝜇VNF − 𝜆VNF . (8)

3.3. Delay modeling for heterogeneous traffic

For heterogeneous traffic, the queuing network is shown in Fig. 2.
The network is approximated with M/G/1 queues. We assume there
re 𝑁 independent traffic classes in the network and for each class 𝑖

its arrival rate (𝜆𝑖) and probability of requiring the network function
traversal (𝑝NF

𝑖 ) is known. The offloading probability (𝑝VNF
𝑖 ) could also

be different for each class 𝑖 and depends upon each other. The cu-
mulative arrival rates for switch processing queue, PNF queue, switch
communication queue and VNF queue are calculated as follows

𝜆SP =
𝑁
∑

𝑖=1
𝜆𝑖 + 𝜆𝑖 × 𝑝NF

𝑖 × 𝑝VNF
𝑖 , (9)

𝜆PNF =
𝑁
∑

𝑖=1
𝜆𝑖 × 𝑝NF

𝑖 × (1 − 𝑝VNF
𝑖 ), (10)

𝜆SC =
𝑁
∑

𝑖=1
𝜆𝑖 + 𝜆𝑖 × 𝑝NF

𝑖 × 𝑝VNF
𝑖 , (11)

𝜆VNF =
𝑁
∑

𝑖=1
𝜆𝑖 × 𝑝NF

𝑖 × 𝑝VNF
𝑖 . (12)

3.3.1. Calculating delay at switch’s processing queue
Switch processing delay calculation is same as homogeneous traffic

model and the queue can be approximated as M/M/1 queue. Hence
delay at the processing queue can be calculated as

𝐿SP = 1
𝑐SP − 𝜆SP . (13)

3.3.2. Calculating delay at switch’s communication queue
For calculating delay at the switch’s communication queue, we first

eed to calculate mean (𝐸[𝑙]) and variance of service time (𝐸[𝑙2]) by
sing the following equations

𝐸[𝑙] = 1
∑𝑁

𝑖=1 𝜆𝑖

𝑁
∑

𝑖=1

𝜆𝑖 × 𝑙𝑖
𝑐SC , (14)

𝐸[𝑙2] = 1
∑𝑁

𝑖=1 𝜆𝑖

𝑁
∑

𝑖=1
𝜆𝑖 ×

(

𝑙𝑖
𝑐SC

)2
. (15)

Now, we can use M/G/1 delay formula for calculating delay at switch’s
communication queue as

𝐿SC = 𝐸[𝑙2] × 𝜆SC

2 × (1 − (𝐸[𝑙] × 𝜆SC))
. (16)
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3.3.3. Calculating delay at switch’s PNF queue
For the PNF queue, mean (𝐸[𝑤]) and variance of service time

𝐸[𝑤2]) can be calculated as

𝐸[𝑤] = 1
∑𝑁

𝑖=1 𝜆𝑖

𝑁
∑

𝑖=1

𝜆𝑖 ×𝑤𝑖

𝑐PNF , (17)

𝐸[𝑤2] = 1
∑𝑁

𝑖=1 𝜆𝑖

𝑁
∑

𝑖=1
𝜆𝑖 ×

(

𝑤𝑖

𝑐PNF

)2
. (18)

By using M/G/1 delay formula, the average delay can be calculated as

𝐿PNF = 𝐸[𝑤2] × 𝜆PNF

2 × (1 − (𝐸[𝑤] × 𝜆PNF))
. (19)

3.3.4. Calculating delay at VNF queue
Similarly, for the VNF queue, mean (𝐸[𝑤]) and variance of service

time (𝐸[𝑤2]) can be calculated as

𝐸[𝑤] = 1
∑𝑁

𝑖=1 𝜆𝑖

𝑁
∑

𝑖=1

𝜆𝑖 ×𝑤𝑖

𝑐VNF , (20)

𝐸[𝑤2] = 1
∑𝑁

𝑖=1 𝜆𝑖

𝑁
∑

𝑖=1
𝜆𝑖 ×

(

𝑤𝑖

𝑐VNF

)2
. (21)

Now, delay can be calculated similarly to the PNF queue by using the
following equation

𝐿VNF = 𝐸[𝑤2] × 𝜆VNF

2 × (1 − (𝐸[𝑤] × 𝜆VNF))
. (22)

C. Calculating the Average Packet Delay: A packet, when enters a
programmable switch, can follow one of the following three paths:
Path 1: If a packet does not require to traverse a network function, it can
e directly sent towards its destination after traversing the processing
nd communication queue of the switch. For such packets, average
acket delay can be calculated as

𝐷NoNF = 𝐿SP + 𝐿SC. (23)

Path 2: If a packet is required to traverse the network function within
he switch, it traverses the processing queue, PNF queue, and commu-
ication queue. Therefore, the average delay of packets traversing the

PNF can be calculated as

𝐷PNF = 𝐿SP + 𝐿SC + 𝐿PNF. (24)

Path 3: If a packet requiring the network function is offloaded to a
NF, then after traversing the processing and communication queue,

t is forwarded towards the VNF. After VNF traversal, it re-enters the
witch’s processing queue. Finally, it exits the switch after traversing
ts communication queue. The average delay for the packets traversing
he VNF can be calculated as

𝐷VNF = 2 × 𝐿SP + 2 × 𝐿SC + 2 ×𝐷SV + 𝐿VNF, (25)

where 𝐷SV is the propagation delay between the switch and VNF. Now,
we can calculate the average packet delay for all the packets entering
the switch based on the probability of packets choosing one of these
three paths. The average packet delay for the homogeneous case can
be calculated as
𝐷 𝑒𝑙 𝑎𝑦homo = 𝑝NF × 𝑝VNF ×𝐷VNF +

NF × (1 − 𝑝VNF) ×𝐷PNF + (1 − 𝑝NF) ×𝐷NoNF.
(26)

For the heterogeneous traffic case, the average delay is calculated
as

𝐷 𝑒𝑙 𝑎𝑦het = 1
∑𝑁

𝑖=1 𝜆𝑖

𝑁
∑

𝑖=1
𝜆𝑖(𝑝NF

𝑖 × 𝑝VNF
𝑖 ×𝐷VNF +

NF
𝑖 × (1 − 𝑝VNF

𝑖 ) ×𝐷PNF + (1 − 𝑝NF
𝑖 ) ×𝐷NoNF).

(27)
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3.4. Problem statement

After calculating the average packet delay, we are now in a po-
sition to explain our main problem of finding the optimal offloading
probability. We define the optimal offloading probability as a value
hat results in the minimum average packet delay. This means, given

the traffic arrival rate, probability of network function requirement,
processing capacities (of the switch, PNF, and VNF), communication
capacity of the switch, packet length and packet workload, we want
to know the optimal offloading probability that minimizes the average
packet delay. Formally, given the values of 𝜆, 𝑝NF, 𝑐PNF, 𝑐SP, 𝑐VNF, 𝑐SC,
𝑤, 𝑙 and 𝐷SV, we attempt to find the optimal 𝑝VNF that minimizes
the average packet delay obtained from Eq. (26) for homogeneous
raffic and Eq. (27) for heterogeneous traffic. VNF offloading could

offer delay improvements, but at the same time, we must consider the
communication cost between the switch and the VNF to analyze the
computation–communication trade-off.

To find the optimal 𝑝VNF for the homogeneous traffic case, we make
use of a space-search algorithm discussed in Section 4.1. For heteroge-
eous traffic, the problem of finding optimal offloading probability is
lightly complex. This is because, for each traffic type, the offloading

probability would be different, leading to the overall minimization of
average packet delay across the traffic types. Therefore, the algorithm
proposed for the homogeneous traffic scenario will not work. We for-
mulate a constrained optimization model for finding optimal offloading
probability in the heterogeneous traffic case. The objective of the
optimization model is to minimize the overall delay and expressed as
follows
Minimize 𝐷 𝑒𝑙 𝑎𝑦het,

subject to 0 < 𝑝VNF
𝑖 < 1, ∀𝑖 = 1 to 𝑁 . (28)

The approach to solving this optimization is presented in Sec-
tion 4.2.
Algorithm 1: Algorithm for finding optimal 𝑝VNF

input: 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛, 𝑖𝑛𝑖𝑡𝑃 𝑟𝑜𝑏, 𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟
𝑡𝑒𝑝𝑆 𝑖𝑧𝑒 = 𝑖𝑛𝑖𝑡𝑃 𝑟𝑜𝑏 / 𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟
VNF = 𝑖𝑛𝑖𝑡𝑃 𝑟𝑜𝑏
hile (stepSize ≥ precision): do

pVNF = minSearch (stepSize,
max[0, 𝑝VNF - (𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟 × stepSize)],
min[1, 𝑝VNF + (𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟 × stepSize)])
𝑠𝑡𝑒𝑝𝑆 𝑖𝑧𝑒 /= 𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟

eturn 𝑝VNF

Algorithm 2: 𝑚𝑖𝑛𝑆 𝑒𝑎𝑟𝑐 ℎ(𝑠𝑡𝑒𝑝𝑆 𝑖𝑧𝑒, 𝑚𝑖𝑛, 𝑚𝑎𝑥)
𝑟𝑒𝑠𝑢𝑙 𝑡 = 𝑚𝑖𝑛
𝑚𝑖𝑛𝑉 𝑎𝑙 = ∞
𝑥 = 𝑚𝑖𝑛
while x ≤ max: do

𝑣𝑎𝑙 = 𝑐 𝑎𝑙 𝑐 𝐿𝑎𝑡𝑒𝑛𝑐 𝑦𝑓 𝑜𝑟𝑃 𝑟𝑜𝑏(𝑥)
if (val < minVal): then

𝑚𝑖𝑛𝑉 𝑎𝑙 = 𝑣𝑎𝑙
𝑟𝑒𝑠𝑢𝑙 𝑡 = 𝑥

𝑥 += 𝑠𝑡𝑒𝑝𝑆 𝑖𝑧𝑒
eturn 𝑟𝑒𝑠𝑢𝑙 𝑡

4. Finding optimal offloading probability

4.1. Homogeneous traffic

As discussed in the previous section, we use a space-search algo-
ithm for finding optimal offloading probability in the homogeneous
raffic case. The proposed algorithm intelligently searches the state
pace and returns a 𝑝VNF value that minimizes the average packet delay.

The algorithm has two procedures. Algorithm 1 is the main pro-
cedure, while Algorithm 2 is a procedure used by Algorithm 1. In
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Fig. 3. Components of the simulator.
Algorithm 1, an input parameter 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 represents the required
precision while obtaining the optimal 𝑝VNF value. Another parameter
𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟 is used to narrow down the step size while proceeding
towards the solution. Algorithm 1 initializes the initial probability
(𝑖𝑛𝑖𝑡𝑃 𝑟𝑜𝑏) to 0.5 and also sets 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 to a minimal value of 1𝑒 − 6
and 𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟 to 10. The algorithm initializes the 𝑝VNF value
with 𝑖𝑛𝑖𝑡𝑃 𝑟𝑜𝑏 and starts searching for the optimal around it (in both
directions) by creating a search space in every step. In every step,
Algorithm 1 uses Algorithm 2. For each value in the search space,
Algorithm 2 utilizes the average packet delay formula (Eq. (26)) and
obtains the delay. Note that the function 𝑐 𝑎𝑙 𝑐 𝐿𝑎𝑡𝑒𝑛𝑐 𝑦𝑓 𝑜𝑟𝑃 𝑟𝑜𝑏(𝑥) returns
the average packet delay at a 𝑝VNF value of 𝑥. Other inputs to this
function are the parameters used in the queuing analysis (explained in
Table 2). Algorithm 2 returns the 𝑝VNF corresponds to the lowest delay
obtained among all the values in the search space. Based on the 𝑝VNF

value obtained in every step, Algorithm 1 modifies the search space.
Also, after each step, Algorithm 1 narrows down the search space using
𝑟𝑒𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝐹 𝑎𝑐 𝑡𝑜𝑟 and eventually identifies the optimal 𝑝VNF.

4.2. Heterogeneous traffic

We need to solve the optimization model presented in Eq. (28) for
the heterogeneous traffic case. The formulation is non-convex because
of the non-convexity of the delay formulae in the objective function.
Because of the non-convexity, there will be multiple extrema. Hence
a method of choice to solve this model should be able to escape from
local minima.

Simulated annealing is a widely used technique to find global
minima in the presence of multiple local minima. The word annealing
comes from a metallurgical process of slow and controlled cooling to
make more robust materials. This process is a step-wise operation,
where temperature changes in every step. The first step of the process
starts by choosing an initial configuration and an initial temperature
value applied to it. Every configuration has an associated energy value
(denoted by 𝐸) that implies the goodness of the configuration. In every
step, the initial configuration is altered using a visiting distribution
function (a move that alters the existing configuration), and a new
configuration is found. Finally, at the end of the step, the energy
difference (𝛥𝐸) is calculated, which is the difference between the
energy of the initial configuration and the new configurations’ energy.
If 𝛥𝐸 is positive, the new configuration is straight-away accepted.
7 
Otherwise, the new configuration is accepted based on an acceptance
probability. The temperature is decreased for the next steps, and the
same procedure is repeated until the global optima is found. As the
temperature decreases, the probability of accepting bad moves (which
are in the opposite direction of the global optima) is also minimized.

Classical simulated annealing (CSA) [49] is the originally proposed
idea which was improved in Fast simulated annealing (FSA) [50]. FSA
converges much faster than CSA while de-trapping from a local mini-
mum more conveniently because of its semi-local visiting distribution.
However, for many problems, FSA and GSA cannot find global minima
efficiently. In [51], CSA and FSA were generalized according to the
Tsallis statistics. This method is known as the dual annealing algorithm.
We use dual annealing algorithm to solve the optimization model pre-
sented in Eq. (28) and obtain an optimal offloading probability (𝑝VNF

𝑖 )
for each traffic stream 𝑖. Dual annealing uses a somewhat distorted
Cauchy–Lorentz visiting distribution, whose shape is controlled by
parameter 𝑞𝑣,

𝑔𝑞𝑣 (𝛥𝑥(𝑡)) ∝
[

𝑇𝑞𝑣 (𝑡)
]− 𝐷

3−𝑞𝑣 ×

⎡

⎢

⎢

⎢

⎢

⎣

1 + (𝑞𝑣 − 1) [𝛥𝑥(𝑡)]2
[

𝑇𝑞𝑣 (𝑡)
]

2
3−𝑞𝑣

⎤

⎥

⎥

⎥

⎥

⎦

1
𝑞𝑣−1

+ 𝐷−1
2

, (29)

where 𝑡 is the artificial time and 𝑞𝑣 is the visiting parameter that con-
trols the cooling rate, affecting how rapidly the temperature decreases.
This visiting distribution is used to generate a trial jump distance
𝛥𝑥(𝑡) of variable 𝑥(𝑡) under temperature 𝑇𝑞𝑣 . 𝐷 is the dimension of the
variable space. The jump is accepted if it is downhill (of the energy
function); if it is not, it might be accepted according to an acceptance
probability. The artificial temperature 𝑇𝑞𝑣 is decreased according to
𝑇𝑞𝑣 (𝑡) = 𝑇𝑞𝑣 (1)

2𝑞𝑣−1 − 1
(1 + 𝑡)𝑞𝑣−1 − 1

. (30)

The Metropolis algorithm [52] is used for the acceptance probabil-
ity, which is calculated as

𝑝𝑞𝑎 = min {1, [1 − (1 − 𝑞𝑎)𝛽 𝛥𝐸
]

1
1−𝑞𝑎 }, (31)

where 𝑞𝑎 is the acceptance parameter. For 𝑞𝑎 < 1, zero acceptance
probability is assigned to the cases where,

[1 − (1 − 𝑞𝑎)𝛽 𝛥𝐸] < 0. (32)
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Table 3
Default values of the simulation and analytical parameters.

Parameter Default value Parameter Default value

𝜆 55 kilo packets
per second
(kpps)

𝜆𝑖 {9,18,27} kpps

𝑝NF 0.8 𝑝NF
𝑖 {0.8, 0.8, 0.8}

𝑐PNF 1.2 ∗ 109 million
instructions per
second (MIPS)

𝑐VNF 2.4 ∗ 109 MIPS

𝑐SP 150 kpps 𝑐SC 109 bits/second

𝑤 20 k MIPS 𝑤𝑖 {10, 20, 30}k MIPS

𝑙 250 Bytes 𝑙𝑖 {250, 500, 750}
Bytes

𝐷SV 5 μs 𝑁 3

By using the above procedure, the dual annealing algorithm suc-
cessfully obtains a solution for the optimization model provided in
Eq. (28).

5. Evaluation

In this section, we present results obtained from the analytical
formulation. We also simulated the network of queues shown in Figs. 1
and 2 and obtained a few simulation results. We decided to validate
our analytical model by simulations rather than real measurements
because simulation results can be obtained faster while still being able
to experiment with different model parameters. For simulations, we
built a custom simulator using Simpy (a popular Python Discrete-event
simulation library [53]. Fig. 3 shows different components of our simu-
lator and the data flow between them. We use SimPy processes and stores
to implement all the queues. SimPy processes define the simulation
behavior by interacting with the SimPy environment whenever any
event occurs. To model delays at the queues, we use timeout events.
Upon the occurrence of the timeout event, the process passes a delay
value to the environment. In our simulation model, we added labels
to the newly generated packets that define the path of the packets in
the queuing network. A packet is either labeled as PNF/VNF or NoNF
based on the values of 𝑝NF and 𝑝VNF. The environment time when the
packet arrives at the switch is tagged within the packet as metadata.
Also, once a packet traverses VNF, it is labeled as ‘‘VNF traversed’’. This
tagging aids the switch in differentiating new packets from the packets
re-entering the switch post-VNF traversal. Once the packet finishes its
execution and reaches the sink (finally comes out of the switch after
PNF/VNF processing), the packet’s arrival time is subtracted from the
current environment time to calculate the delay.

5.1. Parameter settings

The default values used in the simulation and the analytical model
for obtaining the numerical results are shown in Table 3. We model
three traffic types for heterogeneous traffic cases, each with a differ-
ent arrival rate (provided in Table 3). The other relevant parameters
provided in Table 3 are given as input to the optimization model. The
selection of parameters for the simulation and analytical model aligns
with the end-to-end latency data provided in [54]. The benchmarks
provided in [54] were obtained after experimentation on actual P4
devices.

5.2. Offloading probability vs. average delay

We analyze the impact of VNF offloading on the average packet
delay in the first set of results shown in Figs. 4 (for homogeneous case)
and 5 (for heterogeneous case). In these two figures, we also compared
8 
Fig. 4. Comparison of simulation model vs. analytical model for homogeneous traffic.

Fig. 5. Comparison of simulation model vs. analytical model for heterogeneous traffic.

the results obtained from the analytical model with the simulation
model. We plot the average delay for all the packets and compare it
with the two sub-cases of the average delays for the packets traversing
VNFs and PNFs. We observe from the figure that the delay values
obtained from the analytical and simulation models are almost identical
for every value of 𝑝VNF for all three cases.

In the average delay plot, initially, when there is no VNF offloading,
the PNF queue is highly occupied, resulting in massive delays. As VNF
offloading starts, the delay dips as the PNF queue is less congested.
However, beyond a point, delay again tends to increase. This is because
the impact of the overhead of offloading packets to the VNF is more
profound on the delay.

Our second observation from the delay plots is that the PNF delay
continuously decreases; however, VNF delay constantly increases with
the increase in 𝑝VNF. This is because when we increase the offloading
probability, the delay for the packets traversing VNF increases as the
VNF queue builds up. Similarly, delay for the packets traversing PNF
decreases with the rise in offloading probability as the traffic load at
the PNF queue decreases.
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Fig. 6. Impact of packet arrival rate on delay and offloading probability for homoge-
neous traffic.

Table 4
Flow rates for different cases.

𝜆𝑖
𝑓1 𝑓2 𝑓3

Case 1 R 2R 3R
Case 2 3R R 2R
Case 3 3R 2R R

Fig. 7. Impact of packet arrival rate on delay and offloading probability for heteroge-
neous traffic.

Moreover, for the average delay plot corresponding to the homoge-
neous traffic case, our algorithm provided the lowest delay of 41.34 μs
at the 𝑝VNF value of 0.422 (not shown in the figure), which is a correct
estimate as per the plot. The takeaway from this result is that it is
essential to calculate the optimal offloading probability so that delay
can always be minimized.

For the next set of results, we vary different parameters and analyze
their impact on the optimal offloading probability (referred to as 𝑝∗VNF)
obtained from the algorithm. To show the performance benefits of our
algorithm, for each change in the parameters, we also plot the average
packet delay (a) corresponds to 𝑝∗VNF, denoted as optimal offloading;
(b) when there is no offloading, denoted as pure PNF and; (c) when
all the packets are offloaded to the VNF, denoted as pure VNF, in the
figures.
9 
Fig. 8. Impact of VNF and PNF processing capacities on delay and offloading
probability for homogeneous traffic.

Fig. 9. Impact of VNF and PNF processing capacities on delay and offloading
probability for heterogeneous traffic.

5.3. Impact of arrival rate and resource allocation

For the following results shown in Fig. 6, we observe the impact of
the arrival rate (𝜆) on the performance for the homogeneous case. We
realize that 𝑝∗VNF increases significantly with an initial increase in the
arrival rate. However, after an arrival rate of 70 kpps, a further increase
results in a drop in the optimal offloading probability. This is because,
beyond a particular load, the benefits of offloading start fading because
the offloaded packets experience more delay due to queue congestion
at the VNF queue and other communication overheads.

The corresponding optimal delay does not increase much with the
increase in the packet arrival rate compared to the other two cases of
full offloading (the pure VNF case) and no offloading (the pure PNF
case). This result is per our expectation because our method estimates
the optimal offloading hence the obtained delay is minimum among the
three considered situations.

In the case of pure PNF, initially, the delay slightly increases. Then,
however, with a further increase in the load, the delay rises abruptly.
A similar phenomenon is also observed in the case of pure VNF. For
both these cases, the service capacity exhausts after a point. Since VNF
capacity is assumed to be twice that of PNF, for VNF, this point comes
later than the PNF. The key takeaway from this experiment is that at a
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low arrival rate, it does not make sense to offload to the VNF as PNF
can handle it without any significant congestion at its queue. However,
as the load increases, it is advisable to offload as the queue at the
PNF starts building up. Quantitatively, at medium loads (40 k–70 k
pps), optimal offloading leads to the performance gains of 13.54%–
76.44% and 22.28%–49.55% over a pure PNF and pure VNF solution,
respectively.

For the heterogeneous case, we altered the simulation settings to
account for the heterogeneity of the traffic. The result shown in Fig. 7
is quite similar to the one for the homogeneous case (i.e., Fig. 6) with
a few differences. We have considered three different flows (𝑓1, 𝑓2, 𝑓3)
with different rates 𝑅, 2𝑅 and 3𝑅 (the mapping of rates to flows is
discussed further). The 𝑥-axis represents the cumulative packet arrival
rate (R+2R+3R). For this result, we analyze three cases with distinct
‘‘flow to arrival rate mapping’’ as shown in Table 4. The values of
𝑤𝑖s are 10 k, 20 k and 30 k MIPS and the values of 𝑙𝑖s are 250, 500
and 750 Bytes for 𝑓1, 𝑓2 and 𝑓3, respectively. To obtain the plots in
Fig. 7, we varied 𝑅 from 3 k to 17 k pps, with an increment of 1 kpps.
For the three cases, the optimal offloading probability (𝑝∗VNF

𝑖 ) and the
corresponding average delay values are shown in Fig. 7. All three plots
follow a similar pattern for the delay and 𝑝∗VNF

𝑖 . However, in Case 1, the
delay is higher because 𝑓3 is mapped to the 3𝑅 rate. In Case 1, for each
𝑥-axis value, 50% of the traffic belongs to 𝑓3, which has the maximum
average packet workload (i.e., 30 k MIPS) and the average packet
length (i.e., 750 Bytes). For Case 3, the average delay values are the
lowest because rate 3𝑅 is assigned to 𝑓1, which has the lowest average
packet workload and length. For an 𝑥-axis value of 102 kpps, the delay
for Case 1 is 2× that of Case 3. This signifies the impact of the dominant
flow’s presence (𝑓3 in this experiment) on average delay. However,
this performance difference is not as significant at the lower flow
arrival rates. We conclude from this result that in the heterogeneous
case, the average delay and optimal offloading probability follow the
same trend as in the homogeneous case. However, the curves’ slope is
heavily dependent upon the average packet workloads and lengths of
the dominant flow.

We will answer the next important question regarding how much
processing capacity should be allocated to the PNF and the VNF. We
observe from Figs. 8 (for homogeneous case) and 9 (for heterogeneous
case) that when the VNF’s processing capacity is one-fourth to that
of the PNF’s, the optimal offloading probability is the lowest (< 0.1).
However, with an increase in VNF capacity, the optimal offloading
probability starts to improve. However, beyond a point, even a sizable
increase in the VNF capacity does not yield similar improvements in
the optimal offloading probability and the average delay. For the pure
VNF case, the delay is exceptionally high at this point, even though the
queuing delays at the PNF and the VNF queue are the same. However,
other delays, such as propagation delay and additional queuing delays
at the switch (due to re-entering of the packet in the switch), add up
to the total VNF delay.

The key conclusion from this experiment is that the VNF capacity
must be chosen correctly as, beyond a point, we do not get sizable
benefits with an increase in the VNF capacity.

5.4. Impact of the propagation delay and requirement of the network
function

Next, we examine the impact of the propagation delay between the
switch and the VNF in Figs. 10 (homogeneous case) and 11 (heteroge-
neous case). The results are similar for both of these cases. The optimal
offloading probability decreases with an increase in the propagation
delay as it directly affects the delay for the packets traveling to and
from the VNF. Similarly, the corresponding average delay increases,
but not in the same order as the other two cases of pure PNF and VNF.
In the pure VNF case, the delay grows linearly with an increase in the
switch to VNF propagation delay. However, in the pure PNF case, there
is no impact of the propagation delay between the switch to VNF.
10 
Fig. 10. Impact of propagation delay (between the switch and VNF) on delay and
offloading probability for homogeneous traffic.

Fig. 11. Impact of propagation delay (between the switch and VNF) on delay and
offloading probability for heterogeneous traffic.

Fig. 12. Impact of network function traversal probability on delay and offloading
probability for homogeneous traffic.
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Table 5
Probability of network function required for the flows in different cases.

𝑝NF

𝑓1 𝑓2 𝑓3
Case 1 𝑝 2𝑝 3𝑝
Case 2 3𝑝 𝑝 2𝑝
Case 3 3𝑝 2𝑝 𝑝

Fig. 13. Impact of network function traversal probability on delay and offloading
probability for heterogeneous traffic.

From this experiment, the key message is that the VNF must be
placed in close proximity to the programmable switch to obtain the best
latency values. This means the VNF must be in a DC that is not too
far from the programmable switch; otherwise, the propagation delay
will induce less offloading. However, it is interesting to note that with
optimal offloading, the overall delay remains under control (60 μs in
our case) even with a sizeable one-way propagation delay of 55 μs. In
contrast, with pure VNF solution, it proliferates.

We note that not all the packets passing through a programmable
switch require traversing the network function. To capture this sce-
nario, we vary the probability of requiring a network function traversal
(𝑝NF) in the following experiments and evaluate its impact on the over-
all performance. For the homogeneous case, we observe from Fig. 12
that the average delay also increases with an increase in 𝑝NF for all
three delay plots. However, in the case of pure PNF, it grows abruptly
beyond the value of 0.6. After this point, the resources at the PNF start
exhausting, which results in higher congestion at the PNF queue.

The optimal offloading probability remains zero until the 𝑝NF value
of 0.4. This is because, up to this point, PNF can efficiently handle all
the traffic on its own, so there is no benefit of offloading to the VNF.
But after this value, it makes sense to offload to the VNF as the PNF
queue starts building. This experiment implies that when fewer packets
are required to traverse the network function, offloading does not make
sense, as PNF can handle the load itself.

For the heterogeneous traffic scenario, we considered three cases.
For these cases, the probability of the network function’s requirements
for the three flows is listed in Table 5. The result for the heterogeneous
case is shown in Fig. 13. In the figure, on the 𝑥-axis, we show 𝑝
values listed in Table 5. It is to be noted that in all three cases, the
optimal offloading probability and average delay tend to increase with
an increase in 𝑝NF

𝑖 . For Case 1, the average delay is maximum as 𝑓3,
which consists of 50% of traffic (refer Table 3), having the highest
probability of packets requiring network function (3𝑝). Case 3, having
the lowest probability (𝑝) assigned to 𝑓3 incurs the lowest delay among
all three cases. It is to be noted that below 𝑝 = 0.2, the optimal
11 
Fig. 14. Impact of packet length on delay and offloading probability for homogeneous
traffic.

Table 6
Average packet lengths for the flows in different cases.

𝑙𝑖
𝑓1 𝑓2 𝑓3

Case 1 L 2L 3L
Case 2 3L L 2L
Case 3 3L 2L L

offloading probability in all three cases is almost the same, as not much
offloading is required for any of the three flows. This is why we observe
a random trend for 𝑝∗VNF

𝑖 values correspond to the three cases when 𝑝NF
𝑖

is less than 𝑝 = 0.2.

5.5. Impact of packet length and workload

Next, in Fig. 14, we show how the packet length impacts the
average delay and optimal offloading. As we increase the packet length,
the optimal offloading probability decreases. With an increase in the
packet size, per-packet transmission time (from the switch to the VNF)
increases, resulting in a long queue build-up at the switch’s commu-
nication queue. With a decrease in the optimal offloading probability,
the corresponding average delay obtained from our method increases
as the queue at the PNF starts building and the average delay grows.

For the pure VNF case, the impact of packet size on the delay
is more profound. In this case, every VNF packet has to be served
by the switch’s communication queue twice. Additionally, large-sized
packets elevate the service time at the communication queue and,
eventually, the queue occupancy. Interestingly, delay slightly grows
with an increase in packet size, even in the pure PNF case, because
packets still have to be handled once by the switch’s communication
queue.

For the heterogeneous traffic scenario, we have again considered
three different flows (𝑓1, 𝑓2, 𝑓3) with average packet lengths 𝐿, 2𝐿
and 3𝐿. We show the results for the heterogeneous case in Fig. 15.
The 𝑥-axis shows 𝐿 values, which vary from 50 to 850 Bytes, in the
increment of 100 Bytes. For this result, ‘‘flow to average packet length
mapping’’ is shown in Table 6. The values of 𝜆𝑖s are 9 k, 18 k, and
27 k pps and the values of 𝑤𝑖s are 10 k, 20 k and 30 k MIPS for
𝑓1, 𝑓2 and 𝑓3, respectively. For the three cases, the optimal offloading
probability (𝑝∗VNF

𝑖 ) and the corresponding average delay values are
shown in Fig. 15.

In all three cases, for each 𝑥-axis point, 50% of the traffic belongs
to 𝑓 (because 𝑓 is the dominant flow with 𝜆 = 27 kpps). For Case 1,
3 3 𝑖
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Fig. 15. Impact of packet length on delay and offloading probability for heterogeneous traffic.
Fig. 16. Impact of packet workload on delay and offloading probability for homogeneous traffic.
the average delay is higher because 𝑓3 is mapped to the average packet
size of 3𝐿, which is the highest among all the cases. This means 50%
of the traffic has an average packet size of 3𝐿, implying more immense
propagation delays. For Case 3, the average delay is the lowest among
all the cases, as 50% of the traffic has an average packet size of 𝐿.
These curves indicate the role of the disparate flows’ average packet
lengths in the aggregate traffic’s average delay. For the 𝐿 value of 850
Bytes, the average delay for Case 1 is 1.85× that of Case 3. This signifies
that if a dominant flow has larger packets (2550 Bytes), the delay is
exceptionally high compared to the case where the dominant flow has
comparably smaller size packets (850 Bytes).

In the following results shown in Fig. 16, we observe the impact of
the packet workload on the average delay for the homogeneous case.
As we increase the average packet workload, the optimal offloading
probability rises. This is because, in our experiments, the VNF process-
ing capacity (𝑐VNF) is assumed to be twice the PNF capacity (𝑐PNF), and
it will be utilized fully at a higher packet workload. However, with
our method, the delay grows slightly with an increase in the packet
workload. The primary reason behind this phenomenon is that even
though offloading improves with an increase in packet workload, queue
occupancy at the PNF and VNF also increases with the workload.
12 
We show the delay values until the packet workload is less than
25 k MIPS for pure PNF case. The PNF’s capacity is exhausted after
this workload, so we omit those points from the plot. However, for the
pure VNF case, VNF could handle a higher packet workload, but the
delay grows significantly after a packet workload of 30 k MIPS. This
is because, beyond this workload, the service time at the VNF queue
increases remarkably, resulting in higher congestion at the VNF queue.

For the heterogeneous traffic scenario, we have considered three
different flows (𝑓1, 𝑓2, 𝑓3) with average packet workloads of 𝑊 , 2𝑊
and 3𝑊 . We show the results for the heterogeneous case in Fig. 17.
The 𝑥-axis shows 𝑊 values, varying from 6 k to 26 k MIPS. We again
analyze three cases with distinct ‘‘flow to average packet workload
mapping’’ as shown in Table 7. The values of 𝜆𝑖s are 9 k, 18 k and
27 k pps and the values of 𝑙𝑖s are 250, 500 and 750 Bytes for 𝑓1,
𝑓2 and 𝑓3, respectively. For the three cases, the optimal offloading
probability (𝑝∗VNF

𝑖 ) and the corresponding average delay values are
shown in Fig. 17.

Similar to the packet length scenario, in all three cases, for each
𝑥-axis point, 50% of the traffic belongs to 𝑓3. For Case 1, the average
delay is higher because 𝑓3 is mapped to the average packet workload
of 3 W, which is the highest among all the cases. This means 50% of
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Fig. 17. Impact of packet workload on delay and offloading probability for heterogeneous traffic.
Table 7
Average packet workloads for the flows in different cases.

𝑤𝑖

𝑓1 𝑓2 𝑓3
Case 1 W 2 W 3 W
Case 2 3 W W 2 W
Case 3 3 W 2 W W

the traffic has an average packet workload of 3 W, implying more con-
siderable processing delays (for VNF and PNF). For Case 3, the average
delay is the lowest among all the cases, as 50% of the traffic has an
average packet workload of 𝑊 . These results show that the individual
flow’s workload impacts the aggregate traffic’s average packet delay.
However, this impact is less pronounced than the impact of packet
sizes. This implies that if the flows with different packet workloads are
multiplexed, their rates do not heavily impact the delay values.

5.6. Lessons learned for network operators

Based on the results obtained, we have drawn some key conclu-
sions that can benefit an operator planning to offload traffic from
a programmable switch to the VNF. Homogeneous case results show
significant performance gains of optimal offloading compared to the
pure PNF/VNF solutions. Heterogeneous case results are crucial as,
most of the time, flows would be multiplexed. A few of these flows
would be elephant flows, and others could be mice flows. It is essential
to know how the offloading performance changes when the proportion
of these flows changes.

Benefits from VNF offloading are highly interlinked with the traffic rate
at the P4 switch. For example, VNF offloading makes sense once the
traffic load is beyond a threshold. Below that threshold, a PNF or a VNF
solitary can provide similar latency values. Once traffic rates cross this
threshold, offloading looks promising and the average delay reduces
as VNF’s capacity salvages the performance loss due to congestion at
the PNF queue. After a point, when the arrival rate further increases,
offloading benefits are again subsidized as the VNF queues are also con-
gested with traffic. Hence, based on the traffic profile, operators should
look for the window where offloading fetches maximum benefits.

Processing capacity of VNF must be in accordance with the PNF capacity
at the P4 switch. Since the switch’s processing capacity is assumed to
be fixed, VNF capacity can be scaled up based on traffic requirements.
Our results show that it does not make sense to increase VNF capacity
13 
enormously. A VNF capacity of 1.5× the PNF capacity is enough to
provide good delay values. Hence operators can plan the capacity of
VNF according to what they have in their PNF.

The physical distance between VNF and the switch has a bearing on
the overall offloading performance. If the propagation delay between the
switch and VNF goes beyond a limit, offloading does not yield any
benefits. Hence for operators, it is necessary to place the VNF close to
the switch.

Packet attributes also play a crucial role in determining the offloading
performance. Since packet size directly affects the transmission delay,
the larger the packet size, the more time is required to transmit it
to an output port. Offloading from a programmable switch requires
transmitting each packet twice from its output ports (once each before
and after VNF traversal). This is why flows with large-sized packets
are unsuitable for offloading, as the offloading benefit gets neutralized
because of the high transmission delay at the switch. On the other hand,
packet workload has a reverse relationship with offloading gains. Flows
with heavy workloads on packets are better served with offloading. This
way, a high-capacity VNF can be utilized fully instead of a PNF hosted
in a resource-constrained programmable switch. Hence, operators must
note that flows with small-sized packets and heavy workloads are ideal
for VNF offloading.

5.7. Model’s possible deviations from an actual P4 hardware switch

The P4 switch envisaged in our models (Figs. 1 and 2) is fundamen-
tally similar to an actual P4 hardware switch. However, for modeling
purposes, we abstracted specific parameters that may affect delay pro-
files in an actual P4 switch. Though changes in these parameters could
influence the end-to-end delay, precisely quantifying their dynamic
impact is analytically challenging. In the next subsections, we describe
the actual P4 architecture and our corresponding abstractions.

5.7.1. Portable switch architecture
The switching pipeline on an actual P4 hardware switch follows

the Portable Switch Architecture (PSA) [56]. PSA outlines the standard
capabilities of a P4 switch that processes and forwards packets through
multiple interface ports. PSA defines separate ingress and egress packet
pipelines; however, their building blocks are the same. The first compo-
nent of the PSA ingress/egress pipeline is a parser, which is responsible
for header identification, header extraction, buffering, etc. The second
component is the control block, which is designed to define the logic of
data plane programs, including actions on packets. The control block
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Table 8
Measured latency w.r.t. various delay factors in an actual P4 switch [55].

Delay factors in an actual P4
switch while implementing a
NF

Measured ingress latency on a
P4 switch (@10G Interface)

Measured ingress latency on a
P4 switch (@100G Interface)

Corresponding abstraction in
this paper

Header extraction (Parsing) ∼210-250 ns for 1 to 10 parse
states (200-byte packets with
20-byte header)

∼155-185 ns for 1 to 10
header states (200-byte
packets with 20-byte header)

Switch’s Processing Delay

Number of tables in the
pipeline

∼578-581 ns for 1 to 10
tables (with 3 keys of 32-bit,
and 1 k entries in each table)

∼276-281 ns for 1 to 10
tables (with 3 keys of 32-bit,
and 1 k entries in each table)

Switch’s PNF delay

Table key size ∼577-581 ns for 8, 16, and
32-bit LPM keys, matched at 5
tables

∼278-280 ns for 8, 16, and
32-bit LPM keys, matched at 5
tables

Switch’s PNF Delay

Number of table entries ∼354-355 ns for 1 k and
100 k entries of 1 key and
32-bit, matched at 5 tables

∼225-227 ns for 1 k and
100 k entries of 1 key and
32-bit, matched at 5 tables

Switch’s PNF Delay
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utilizes stateless objects such as Match-Action tables, as well as stateful
external objects like registers. The final component of PSA is a deparser
that specifies the packet contents to be sent to the buffer, and what
metadata related to the packet is carried with it.

5.7.2. Mapping model’s components to the PSA
Table 8 shows results presented in [55] regarding delay profiling

of an actual Tofino-based P4 switch (APS BF2556X-1T [57]). The data
plane latency provided in [55] is calculated for the traffic running
ia interfaces configured as 10 Gb (SFP+) and 100 Gb (QSFP28). The
able highlights the impact of various attributes on the overall packet

delay observed in an actual P4 switch. Though our assumptions are
well aligned with the P4 switch’s PSA architecture, our focus remained
n showing the performance benefits of offloading to an external VNF.

Hence, we abstract delays introduced by different building blocks of
the P4 switch to processing and PNF delays. In the last column of
Table 8, we show our abstractions corresponding to each delay factor.

he parsing delay is abstracted to switch’s processing delay, and the delay
induced by the match-action pipeline is considered the PNF delay, as
this is purely dependent upon how the PNF is implemented on the
switch. PNF delay is influenced by several factors, such as the number
of match-action tables in the pipeline, table key size, number of entries
in the match-action table, and match type (exact or LPM, i.e., longest
prefix match). The switch’s communication delay described in our model
is rather straightforward and is directly influenced by the interface
speed (10G or 100G).

5.7.3. Impact of PNF type on delay
In addition to the factors mentioned in Table 8, the PNF delay

lso depends upon the type of network function being implemented
n the P4 switch. Because P4 is protocol-independent, vendors can
mplement packet processing for any data plane protocol. Researchers
ave already shown that network functions such as L2 forwarding
L2fwd), L3 forwarding (L3fwd), Firewall, Network Address Translation

(NAT), Load Balancer, and Intrusion Detection Systems (IDS) can easily
be implemented on P4 hardware [12]. All these network functions
equire a distinct Match+Action pipeline that the P4 program can
efine. During the compilation, the P4 program can then be converted
nto a Table Dependency Graph, which is eventually mapped onto the
4 hardware. Note that the network functions mentioned above belong
o stateful and stateless categories. For example, L2fwd and L3fwd are
tateless, while the firewall is stateful. The abstractions from network
unctions to P4 pipelines have been studied in [14]. Because of the

distinct resource requirements, implementing each PNF on a P4 switch
would exhibit a disparate latency profile. Since our proposed analytical
models are generic, they do not capture the impact of the type of the
PNF being implemented on the P4 switch.
14 
5.7.4. Realization of packet differentiation mechanism on a P4 switch
We show in Figs. 1 and 2 that packets re-enter the P4 switch after

traversing VNF. These packets take a different path within the switch
compared to those entering it for the first time. Also, for the hetero-
geneous case, we show that packets from different traffic classes are
dealt with differently by the P4 switch. To implement such pipelines,
the PSA-based P4 switch supports multiple classes of service for packets
sent to the packet buffer. PSA implementations support the class of
service mechanism by having a separate FIFO queue per class of
service. Thus, unicast packets with the same ingress and egress port but
different classes of service may be processed by the egress control block
in a different order than the ingress control block processed them. This
capability allows the P4 switch to differentiate between packets from
various classes, which is crucial for our proposed models.

6. Conclusion

This paper presents the performance benefits of optimally offloading
traffic from a P4-switch to a VNF. We have considered two queuing

odels corresponding to the two cases of homogeneous and hetero-
eneous traffic streams. We designed a network of M/M/1 queues for

the homogeneous case, whereas a network of M/G/1 queues is created
o account for the multiplexing of heterogeneous traffic streams. We

then utilized queuing formulae to obtain the average packet delay
for both cases. Finally, we proposed algorithms to obtain the opti-
mal offloading probability for a packet. The simulation and analytical
esults demonstrated a significant performance benefit of optimal of-
loading. The packet offloading probability initially increases with
he arrival rate; however, it starts dropping beyond a rate because
f the communication–computation trade-off. For homogeneous traf-
ic pattern, with our optimal offloading scheme, at medium loads,
erformance gains of 13.54%–76.44% and 22.28%–49.55% can be
btained over a pure PNF and pure VNF solution, respectively. The
esults concluded that offloading probability is maximum for small-
ized packets with high workloads. For heterogeneous traffic patterns,
he dominant flow affects the overall offloading performance. A delay
eduction of up to 2× is obtained if the dominant flow has the smallest
verage packet size and workload. The results showing the impacts of
rocessing resource allocation and propagation delay (between the P4
witch and VNF) are also presented, which can help an operator plan
o deploy P4 switches with the VNFs.

The first area of future work will focus on analyzing the perfor-
mance of multiple PNFs and VNFs working together to form a service
function chain. Supporting multiple PNFs on a P4 switch requires
utilizing multiple match-action tables and registers to store state in-
formation, which introduces new modeling challenges that need to be
addressed. Secondly, we want to consider the MMPP/M/1 model, as
next-generation applications such as virtual reality and video streaming
generate bursty and correlated traffic. MMPP is an effective tool for
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modeling this type of traffic due to its ability to capture time-varying
arrival rates. Furthermore, the superposition and splitting operations
of MMPPs produce a new MMPP, which facilitates the derivation of
nalytical models in complex network environments.
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